US009183099B2

a2 United States Patent 10) Patent No.: US 9,183,099 B2
Cota-Robles et al. 45) Date of Patent: Nov. 10, 2015
(54) REPLICATION OF A WRITE-BACK CACHE 2012/0226866 Al* 9/2012 Bozeketal. ... 711/122
USING A PLACEHOLDER VIRTUAL 2014/0096139 Al* 4/2014 Alshinnawi et al. .. 718/103
2014/0143496 Al* 52014 Bert 711/130
MACHINE FOR RESOURCE MANAGEMENT 2014/0157040 Al* 6/2014 Bennahetal. 714/2
. 2014/0181015 Al* 6/2014 Bonzini 707/613
(71) Applicant: VMware, Inc., Palo Alto, CA (US) 2014/0181397 Al* 6/2014 Bonzini .. 71112
(72) Inventors: Erik Cota-Robles, Mountain View, CA OTHER PUBLICATIONS
(US); Keith Farkas, San Carlos, CA . . .
(US); Anne Holler, Los Altos, CA (US) Bansal et al., CAR: Clock with Adaptive Replacement, Proceedings
’ ’ ’ of the Third USENIX Conference on File and Storage Technologies,
(73) Assignee: VMware, Inc., Palo Alto, CA (US) San Francisco, CA, USA, Mar. 31-Apr. 2, 2004, USENIX Associa-
tion, 15 pages.
(*) Notice: Subject to any disclaimer, the term of this The Storage Holy Grail: Decoupling Performance from Capacity,
patent is extended or adjusted under 35 Technical White Paper, Copyright 2013 PernixData, Inc., down-
U.S.C. 154(b) by 149 days. loaded on Oct. 25, 2013, www.pernixdata.com, 5 pages.
PernixData FVP, Technical White Paper, Copyright 2013
(21) Appl. No.: 14/078,185 PernixData, Inc., downloaded on Oct. 25, 2013, www.pernixdata.
com, 6 pages.
(22) Filed: Nov. 12, 2013 Hogan, Begin the Journey to a Private cCoud with Datacenter
Virtualization, Virtual Flash (vFlash) Tech Preview, VMware
(65) Prior Publication Data vSphere Blog, VMware Blogs, Dec. 11, 2012, 3 pages.
US 2015/0135003 Al May 14, 2015 * cited by examiner
(51) Int.CL Primary Examiner — Charles Ehne
GO6F 11/00 (2006.01)
GO6F 11/16 (2006.01) (57) ABSTRACT
GO6F 12/08 (2006.01) .
GOG6F 9/455 (2006.01) Exemplary methods, apparatuses, and systems include a first
GO6F 9/50 (2006.01) host system configuring storage of the first host to serve as a
(52) US.CL primary cache for a virtual machine running on the first host.
CPC ... GO6F 11/1666 (2013.01); GOG6F 9/455 A second host system configures storage of the second host to
(2013.01); GO6F 9/50 (2013.01); GO6F serve as a secondary cache and boots a placeholder virtual
12/0815 (2013.01); GOGF 9/45533 (2013.01); machine. The first host transmits, in response to write opera-
GOG6F 2212/603 (2013.01) tions from the virtual machine directed to the primary cache,
(58) Field of Classification Search copies of the write operations to the second host to create
CPC ... GOGF 11/1666; GOGF 12/0866; GO6F mirrored copies on the secondary cache. The first host
2212/603; GOG6F 9/5077 acknowledges each write operation from the virtual machine
See application file for complete search history. when the write operation is committed to both the primary
cache and the secondary cache. When the virtual machine is
(56) References Cited restarted on the second host in response to a failure or migra-

2007/0094648 Al*

U.S. PATENT DOCUMENTS

8,060,683 B2* 11/2011 Shultzetal. ... 7116
4/2007 Post 717/140

tion event, the secondary cache is promoted to serve as a new
primary cache for the virtual machine.

20 Claims, 4 Drawing Sheets

i)

ADMIN, CONSOLE. INVENTORY MANAGER
) g

‘SOFTWARE 155

VIRTUAL NACHINE MANAGEMENT SERVER 140

SOFTWARE INTERFACE
ey

][l Jo
EJU

o HARDUARE

110 i 125
N
v VA | e
e =
= AL o T
o | | v

PHYSICAL COMPUTER

1%

[

U.S. Patent Nov. 10, 2015 Sheet 1 of 4 US 9,183,099 B2

100 19
4)
106
cuENT | | cLent |. . .| cuienT [| cuient
DEVICE | | DEVICE | | DEVICE | | DEVICE
ADMIN
DEVICE

VIRTUAL INFRASTRUCTURE MANAGEMENT (VIM) SERVER 130

ADMIN. CONSOLE INVENTORY MANAGER
160 165

\4

INFRASTRUCTURE MANAGEMENT SOFTWARE 155

VIRTUAL MACHINE MANAGEMENT SERVER 140

SOFTWARE INTERFACE

145 <

™ T

i 11{l i l ir 9

B VIRT. S/W ¢ — VIRT.SW !] VIRT SiW

120 =]

185

b Pe'= HARDWARE — HARDWARE — HARDWARE

180 _/ PHYSICAL COMPUTER PHYSICAL COMPUTER PHYSICAL COMPUTER

135J A Y A ¢

FIG. 1

|_\.
o
=
[

U.S. Patent Nov. 10, 2015

Sheet 2 of 4

200

Start primary VM & configure
primary cache on primary host
205

:

Identify secondary cache on
secondary host
210

l

Establish connection between
primary and secondary caches
215

Set primary cache policy to
write back
230

Y

| 225

Intercept write to primary
cache
239

Y

Y

Transmit copy of write to
secondary cache and route
write to primary cache
240

Flush dirty data in primary

US 9,183,099 B2

cache to backing storage |«
265

\ 4

Copy cache data to secondary
cache
270

Existing
cache data on 2nd?
220

Yes

Copy cache data to/from
secondary cache

Fail over or migrate VM to
secondary/new primary host
250

Yes

Migration
or failover needed?
245

No

Y

Change for
secondary?
255

Set primary cache policy to

write through
260

FIG. 2

U.S. Patent

Nov. 10, 2015

Start secondary VM &
configure secondary cache on

secondary host
305

!

Establish connection between
primary and secondary caches
310

Existing
cache data to copy?
315

Copy existing data from other
cache
320

!

Receive and write copy of data
from primary cache
325

Primary
to migrate/fail over to
secondary host?
330

Sheet 3 of 4

300

No

Yes

FIG. 3

Copy dirty data in primary
cache to VM storage
345

i

Migrate or terminate secondary
VM & promote secondary
cache to primary
340

i

Receive any migration/fail over
data from primary host
335

US 9,183,099 B2

U.S. Patent

Nov. 10, 2015

Sheet 4 of 4

< 400

Memory
(e.g., ROM, RAM, mass
storage, efc.)
410

Interfaces
415

Network and Port

<——

Microprocessor(s)

405 <

11O Devices &
Interfaces
(e.g., touch input,
audio, etc.)
425

FIG. 4

US 9,183,099 B2

Display Controller(s) &
Device(s)
420

US 9,183,099 B2

1
REPLICATION OF A WRITE-BACK CACHE
USING A PLACEHOLDER VIRTUAL
MACHINE FOR RESOURCE MANAGEMENT

FIELD OF THE INVENTION

The various embodiments described herein relate to repli-
cating dirty data in a write-back cache. In particular, embodi-
ments relate to replicating primary cache writes from a first
host system to a secondary cache coupled to or included
within a second host system to enable a virtual machine to be
failed over or migrated to the second host system and to utilize
the secondary cache to access the replicated dirty data when
the primary cache is unavailable due to failure of the first host
system, network partition, etc.

BACKGROUND OF THE INVENTION

In a virtualized environment, high availability (HA) and
migration enable a virtual machine running on a one host
system to be resumed or restarted on another host system with
minimal interruption to the service provided by the virtual
machine. As a part of migration or fail over, one or more
virtual devices associated with a virtual machine are moved
from one host to another host. For example, the virtual hard
drive for the virtual machine may be copied from source to
destination while the virtual machine is still running on the
source. The virtual machine is then stopped or suspended at
the source and restarted or resumed at the destination. While
the virtual machine is stopped or suspended at the source,
device state and other data that had not been committed to the
virtual hard drive are also be copied to the source (if avail-
able).

Virtual machines commonly utilize caching to improve
input/output performance. Caches typically run in one of two
modes, using write-through (WT) or write-back (WB) cach-
ing. In both modes, reads are cached in accordance with one
of a number of algorithms (e.g., least recently used (LRU),
adaptive replacement cache (ARC), CLOCK with Adaptive
Replacement with Temporal filtering (CART), etc.). In WT
caching, writes are written both to the cache and to the back-
ing storage (e.g., for a virtual machine, to a corresponding
virtual hard drive image, which may be implemented as a file
in a file system on persistent storage media such as a storage
area network (SAN) or network-attached storage (NAS)).
The write is not returned as successful until both the write
operation to the cache and the write operation to the backing
storage succeed. As a result of the data being committed to the
backing storage, a virtual machine utilizing a write through
cache may be migrated or failed over to another host system
without the cache and, therefore, without losing any data that
was stored in the cache. In WB caching, however, a write is
returned as successful when the write to the cache succeeds
(i.e., without waiting for a write to backing storage). As a
result, writes to a WB cache may be performed more quickly
than writes to a WT cache. A subsequent flush operation
writes the WB cache data to the backing storage. Data written
to the WB cache but not yet flushed to the backing storage is
referred to herein as “dirty data” WB caches typically batch
many writes into a single flush operation so a large amount of
dirty data may be present in the cache. A large amount of dirty
data, having not been committed to the virtual hard drive or
other backing storage, slows down the migration/recovery of
a virtual machine. For example, when the cache is not acces-
sible for use by the destination host system (i.e., the host upon
which the virtual machine has been restarted or resumed), the
cache (or at least the dirty data) is to be copied to the desti-

15

20

25

35

40

45

2

nation host while virtual machine is stopped or suspended.
The larger the amount of cached data that needs to be trans-
ferred, the longer the migration/recovery will take. Even
when the cache is accessible to the destination host system,
use of the original cache by the migrated/recovered virtual
machine typically incurs the expense of slower access to the
cache over the network.

SUMMARY OF THE INVENTION

Exemplary methods, apparatuses, and systems include a
first host system configuring storage of the first host system to
serve as a primary cache for a virtual machine running on the
first host system. A second host system in a cluster of inter-
connected hosts configures storage of the second host system
to serve as a secondary cache and boots a placeholder virtual
machine on the second host system to reserve processing,
memory, or storage resources within the second host system
to account for operation of the secondary cache or when the
secondary cache is promoted to become a new primary cache.
A hypervisor agent/driver running on the first host system
intercepts write operations from the virtual machine directed
to the primary cache and transmits copies of the write opera-
tions to the second host system to create mirrored copies on
the secondary cache. The first host system acknowledges the
success of each write operation from the virtual machine
when the write operation is committed to both the primary
cache and the secondary cache to ensure that the primary and
secondary caches are consistent. When the virtual machine is
restarted or resumes execution on the second host system in
response to a failure or migration event respectively, the sec-
ondary cache is promoted to serve as a new primary cache for
the virtual machine and the placeholder VM is shut down.
Whenever a secondary cache becomes inaccessible a new
secondary cache is created on a third host in the cluster and a
new placeholder VM is booted on the third host.

In one embodiment, the first host system changes the cach-
ing policy for the primary cache from write back to write
through in response to a change in the number of secondary
caches. Upon remediation of the change, e.g., restoring or
establishing a new secondary cache, the first host system
returns the caching policy to write back.

Other features and advantages will be apparent from the
accompanying drawings and from the detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and
not limitation in the figures of the accompanying drawings, in
which like references indicate similar elements, and in which:

FIG. 1 illustrates, in block diagram form, an exemplary
virtual datacenter environment including one or more net-
worked processing devices implementing replication of a
write back cache;

FIG. 2 is a flow chart illustrating an exemplary method of
a primary host system replicating a write back cache;

FIG. 3 is a flow chart illustrating an exemplary method of
a secondary host system replicating the write back cache; and

FIG. 4 illustrates, in block diagram form, an exemplary
processing system to implement one or more of the methods
of write back cache replication.

DETAILED DESCRIPTION

Embodiments described herein include storing write
operations both on a write back cache within or coupled to a
first host system and a secondary cache within or coupled to

US 9,183,099 B2

3

a second host system. As a result, the time required during
migration to copy dirty data, e.g., data that has not been
committed to the backing storage of the primary cache, is
reduced. If fail over occurs because the first host system fails
or if there is a network partition, the dirty data has been
replicated and, therefore, is not lost. Additionally, when a
virtual machine that relies upon the primary cache is restarted
or resumed on the second host system as a result of fail over
ormigration respectively, the virtual machine is able to utilize
the secondary cache. As a result, the virtual machine does not
need to wait for the cache to repopulate with data and gains
the benefit of the cache right away.

FIG. 1 illustrates, in block diagram form, an exemplary
virtual datacenter environment 100 including one or more
networked processing devices implementing replication of a
write back cache. In a write-through cache, when data is
written to the cache it is written to the backing storage before
returning control back to the process that wrote the data. In
contrast, in a write-back cache, when data is written to the
cache control is returned to the process that wrote the data
before the data is written to the backing storage. The cached
data is subsequently written to the backing storage at speci-
fied intervals or under certain conditions. Server-based com-
puting in a virtual datacenter environment allows client
devices 105 to access centrally-managed user virtual desk-
tops, such as those implemented by VMs 110, via network(s)
115 (e.g., a local area network or other private or publically
accessible wide area network, such as the Internet).

VMs 110 are complete computation environments, con-
taining virtual equivalents of the hardware and system soft-
ware components of a physical system and are typically
implemented by an extensive virtualization infrastructure,
which includes a variety of software and hardware compo-
nents. A virtualization software layer 120 (e.g., a hypervisor)
running on hardware 125 of physical computer (host system)
135 manages one or more VMs 110. Virtualization software
layer 120 manages physical resources, e.g., hardware 125, as
well as maintains virtual-to-physical hardware mappings. For
example, caching agent/driver 185 runs on or as a part of
virtualization software 120 and manages cache 180 as
described herein.

In one embodiment virtual infrastructure management
(VIM) server 130 orchestrates the provisioning of software
defined datacenter services. Exemplary services include vir-
tualized compute, networking, storage, and security services
that implement the infrastructure of virtual datacenter 100.
VIM server 130 manages the corresponding VMs 110
through communications with software interface 145 of vir-
tual machine management server (VMMS) 140. VMMS 140
is responsible for provisioning and maintaining the multitude
of VMs 110 implemented across one or more host systems
135 as well as storage 150 utilized by VMs 110.

VIM server 130 may be a physical computer system or a
virtual machine that runs infrastructure management soft-
ware 155. Infrastructure management software 155 within
VIM server 130 manages pools of computer resources to run
VMs 110 on a cluster of host systems (i.e., multiple net-
worked host systems 135) with central/graphics processing
units (CPU’s and/or GPU’s), memory, and communications
hardware. Infrastructure management software 155 includes
one or more modules, including administrative console 160
and inventory manager 165.

Each storage device 150 may be a disk array or other
collection data stores. For example, each storage device 150
may implement a redundant array of independent disks
(RAID) algorithm to combine multiple drive components
into a logical unit and divide and/or replicate data among

10

15

20

25

30

35

40

45

50

55

60

65

4

multiple physical drives. In one embodiment, storage device
150 includes a processing device or other storage controller
(not shown) and or a cache (in addition to or in place of cache
180).

Administrative console 160 provides a remotely accessible
user interface to administrator device 106 to manage the
configuration of VMs 110 within the virtual datacenter 100.
In one embodiment, administrative console 160 exports a
graphical user interface via hypertext transfer protocol
(HTTP) to be accessed by a web browser. Alternatively, a
command-line interface or a rich client is provided to admin-
istrator device 106, which includes a web browser to access
the administrative console. Administrative console 160
allows administrator device 106 to configure or define poli-
cies for the automatic configuration of a primary cache 180
for use witha VM 110, a number and/or location of secondary
caches 180 to mirror a primary cache 180, and/or caching
policies (e.g., write through, write back, caching algorithm,
etc.). Additionally, administrative console 160 allows admin-
istrator device 106 to perform functions, such as: cloning and
migrating VMs, defining VM state policies, configuring stor-
age overcommit settings for different data stores 150, per-
forming rebalance operations on a set of virtual desktops,
configuring firewall and other networking/security services,
adding servers, isolating multi-tenant organizations, creating
datacenter service templates, defining role-based access,
monitoring processor, memory, and storage usage/allocation,
pooling resources, and other similar operations.

Inventory manager 165 handles the events received from
VMs 110 and host systems 135. For example, when a sec-
ondary cache 180 become inaccessible to a host system 135,
a software agent running on host system 135 sends a notifi-
cation to inventory manager 165. Inventory manager 165
determines an effective policy that applies to the cache and
performs a remediation operation such as creation of a new
secondary cache, if required. Inventory manager 165 may
also use timer-based events to schedule effective remediation
operations.

In general, VMMS 140 provides software interface 145 to
enable an administrator or other entity, such as inventory
manager 165, to access and manage VMs 110 as described
above. Additionally, VMMS 140 supports operations for the
discovery of compute, storage, and network resources; cre-
ation of logical compute pools by providing features such as
automatic CPU and memory load balancing; provisioning/
creation of one or more virtual disks, on local or shared
storage-clones with full or sparse disks; creation of cloned
VMs; and power operations on virtual machines (power on,
power-off, suspend, resume, checkpoint, etc.).

While illustrated as separate components, in one embodi-
ment, a single server or other networked processing device
implements VIM server 130 and VMMS 140. For example,
one or more VMs 110 may implement one or both of VIM
server 130 and VMMS 140. Additionally, while only three
exemplary host systems 135 are illustrated, additional host
systems may be included within virtual datacenter environ-
ment 100. For example, host systems 135 within a cluster of
thirty or more host systems 135 may implement write back
cache replication as described herein.

FIG. 2 is a flow chart illustrating exemplary method 200 of
aprimary host system replicating a write back cache. At block
205, primary host system 135 creates or otherwise starts
primary VM 110 using a virtual disk within storage 150. For
example, VMMS 140 may select a host system 135 based
upon resource utilization and/or another policy and transmit
an instruction to that host system 135 to start or create primary
VM 110.

US 9,183,099 B2

5

Additionally, the instruction or configuration data for pri-
mary VM 110 causes primary host system 135 to configure
primary cache 180 for primary VM 110. In one embodiment,
configuring primary cache 180 includes designating of a por-
tion of storage within primary host system 135 or within
storage device 150 to be used by primary VM 110 as a cache.
The designated portion may be for the creation of a new cache
or the selection of an existing cache within primary host
system 135 or within storage device 150. For example, pri-
mary VM 110 may have previously run on primary host
system 135 and a copy of primary cache 180 may remain from
the previous run. Additionally, primary host system 135 may
have previously been a secondary host system 135 and
included a secondary cache 180, which is now being pro-
moted to become the primary cache 180 (which is also
described with reference to FIG. 3). In one embodiment, each
cache 180 includes an identification of a corresponding pri-
mary VM 110. For example, during configuration of primary
cache 180, agent 185 (or primary host system 135 more
generally), determines if an existing cache within primary
host system 135, a secondary host system 135, or within
storage device 150 includes the identification of the corre-
sponding primary VM 110 and, if so, the existing cache is
used. In another embodiment, the creation of a new cache
includes copying data from an existing cache on another host
system 135 (e.g., as described with reference to blocks 220-
225).

Additionally, the configuration of primary cache 180 may
include one or more of a caching algorithm (e.g., LRU, ARC,
CART, etc.), an operation policy (e.g., write through or write
back), and a replication policy (e.g., a number of secondary
caches 180 to mirror primary cache 180). For example, an
administrator or user may select a cache to operate as a write
through cache, write back cache with no secondary caches, a
write back cache with one secondary cache, a write back
cache with two secondary caches, etc. In one embodiment,
regardless of the designation of a write back operation policy,
primary cache 180 operates as a write through cache until
primary cache 180 is connected with one or more secondary
caches 180. In one embodiment, an odd number of caches 180
is maintained for a given VM if more than one cache is
specified to ensure data consistency. In an alternate embodi-
ment, an even number of caches 180 are used along with a
tie-breaking mechanism. For example, another host may
maintain metadata about the VM’s caches but no data itself. If
there is a discrepancy between versions of data stored in the
even number of caches, the metadata stored by the other host
system is used to break the tie and determine which cache is
correct or stores the most recent version of data.

In one embodiment, primary cache 180 is configured in a
manner that is transparent to primary VM 110. For example,
primary cache 180 may be inserted in the input/output (I/O)
path of primary VM 110 with the guest operating system
running within primary VM 110 being aware. As a result,
VMs 110 are able to share a pool of storage resources for
caching and VMs 110 are not aware that they are doing so.
Alternatively, primary cache 180 is configured such that pri-
mary VM 110 is aware of the cache. In such a VM-aware
embodiment, portions of storage are allocated to each VM
110 and these portions are presented as disks within the guest
operating system of the corresponding VM 110.

At block 210, primary host system 135 identifies one or
more secondary caches 180 on secondary host systems 135.
For example, once primary VM 110 is selected or started, a
management server 130/140 determines a list of compatible
secondary host systems 135 to implement secondary caches
180. The management server 130/140 may make the deter-

10

15

20

25

30

35

40

45

50

55

60

65

6

mination to optimize each host system’s cache capacity, opti-
mize the performance of the more important VMs 110, or
based upon one or more of files used by primary VM 110, a
need to reserve capacity within particular host systems 135,
available capacity in other caches 180, a set of host systems
135 capable of running primary VM 110, the other resources
required by primary VM 110, etc. For example, primary VMs
110 may be ranked according to their relative importance.
Relative importance rankings may be based upon one or more
of rankings assigned by an administrator, tasks performed by
the VMs 110, data managed by the VMs 110, priority of users
of'the VMs 110, etc. A primary VM 110 with a high relative
importance and its corresponding secondary VMs 110 may be
assigned to host systems 135 that are likely to provide the
highest level of service, include the greatest/fastest resources,
have fast/reliable communication links with one another, etc.
Alternatively, agent 185 makes the determination based upon
similar information. In one embodiment, VIM server 130,
VMMS 140, or one or more host systems 135 maintains a
database or other data structure that maps the selected pri-
mary and secondary host systems 135 and caches 180 to
enable agent 185 to determine the list of compatible second-
ary host systems 135.

At block 215, primary host system 135 establishes a con-
nection between primary cache 180 and secondary cache(s)
180. For example, agent 185 within primary host system 135
may establish a reliable data transfer (RDT) connection with
each secondary host system 135 to ensure delivery of data
between respective caches 180. In one embodiment, once
secondary host systems 135 have started and configured sec-
ondary VMs 110 and secondary caches 180, VMMS 140
notifies primary host system 135 that secondary host systems
135 are ready to establish a connection and receive replicated
data.

At block 220, primary host system 135 optionally deter-
mines if there is existing data within a secondary cache 180 to
be copied to primary cache 180. For example, if primary VM
110 is being restarted as a part of a fail over or migration or
otherwise has existing dirty data stored within a secondary
cache 180 that is not stored with primary cache 180, agent 185
facilitates the copying of the dirty data at block 225. Simi-
larly, if primary cache 180 currently stores data not stored on
a secondary cache 180, agent 185 facilitates the copying of
the data at block 225.

In one embodiment, if the primary VM 110 is being
restarted due to a failure and it was configured for write back,
agent 185 determines which of the VM’s caches 180 are
accessible to the host system 135. Agent 185 further deter-
mines whether the number of accessible caches 180 is a
majority of the caches 180 and if these cache instances are
data consistent. If these conditions are met (or if the cache
policy was setto write through) agent 185 allows primary VM
110 to power on. If these conditions are not met (accessible
caches 180 are not a majority of the caches 180 and data is
inconsistent between accessible caches 180), agent 185
blocks the power on and reassesses the condition of caches
180 when additional host systems 135 or storage devices 150
become accessible.

Otherwise, at block 230, primary host system 135 sets the
operation policy for primary cache 180 to write back. As
discussed above, configuration of primary cache 180 may
include setting the operation policy. In one embodiment,
when primary cache 180 is to operate as a write back cache
and there are no existing caches, the setting of the operation
policy to write back is delayed until the connection with
secondary cache(s) 180 is established. Until the connection is
established, primary cache 180 operates as a write through

US 9,183,099 B2

7

cache to prevent any potential loss of dirty data prior to the
ability to mirror writes to secondary cache(s) 180.

At block 235, agent 185 (or, more generally, hypervisor
120) intercepts each write operation from primary VM 110
and directed to primary cache 180. Agent 185 generates a
copy of the write operation and, at block 240, transmits each
copy to secondary cache 180 and routes the write operation to
primary cache 180. In response to successfully storing the
write operation in both primary cache 180 and secondary
cache(s) 180 (e.g., as confirmed via the RDT connection),
hypervisor 120 transmits an acknowledgment of the success-
ful write to primary VM 110.

At block 245, hypervisor 120 (or an agent running on
hypervisor 120) monitors primary VM 110 and primary cache
180 for a failure or migration event. In one embodiment, a
failure includes primary VM 110 losing access to its datastore
150 or primary VM 110 crashing. If such an event occurs, at
block 250, primary VM 110 is failed over or migrated to a
secondary host system 135 or a new primary host system 135.
Restarting or resuming primary VM 110 on a secondary host
system 135 is described with reference to FIG. 3 below.
Otherwise, or additionally, the restarted or resumed VM 110
and new primary cache 180 are configured and operated on
another host system 135 according to method 200 described
above. For example, in facilitating a fail over or migration of
primary VM 110 to another host system 135, management
server 130/140 may select between a secondary host system
135 with an existing secondary cache 180 or a new secondary
host system 135 without an existing secondary cache 180
based upon host system resource availability/utilization, per-
formance characteristics, predicted recovery/restart times,
etc.

If no migration or failure event is detected, at block 255,
hypervisor 120 (or an agent running on hypervisor 120) moni-
tors for a change of secondary VM(s) 110 or secondary
cache(s) 180. Exemplary changes include a secondary VM
110 or secondary cache 180 failing and the addition or
removal of a secondary cache 180 (e.g., inresponse to a policy
change from administrator device 106). For example, VMMS
140 or another host system 135 may alert hypervisor 120 of
primary host system of such a change. Additionally, if pri-
mary host system 135 fails to receive acknowledgement of a
write operation transmitted to secondary host system 135 for
secondary cache 180 within a threshold period of time, hyper-
visor 120 of primary host system 135 may determine that
secondary host system 135 or secondary cache 180 has failed.
A new secondary cache 180 may be configured on another
host system 135 (e.g., a third host system) and connected to
primary cache 180 in response to such a change as described
below with reference to FIG. 3.

If hypervisor 120 detects no change at block 255, method
200 continues with intercepting and transmitting copies of
write operations to secondary cache(s) 180 at blocks 235 and
240. Ifhypervisor 120 detects a change, at block 260, primary
host system 135 optionally alters the operation policy for
primary cache 180 to write through. Additionally, at block
265, primary host system 135 optionally flushes/copies dirty
data from primary cache 180 to persistent storage 150. As a
result, the potential loss of dirty data or inconsistency
between caches 180 is prevented while the change in second-
ary cache(s) 180 is implemented.

At block 270, primary host system 135 optionally copies
cached data (or a portion thereof) from primary cache 180 to
the new/recovered secondary cache 180. Alternatively, an
existing secondary host system 135 copies cached data (or a
portion thereof) from a secondary cache 180 to the new/
recovered secondary cache 180. When the change to second-

10

15

20

25

30

35

40

45

50

55

60

65

8

ary cache(s) 180 is complete, method 200 resumes at block
210 with primary host system 135 confirming secondary
cache(s) 180 for primary cache 180, establishing connection
to any new/recovered secondary cache(s) 180 at block 215,
etc.

FIG. 3 is a flow chart illustrating exemplary method 300 of
a secondary host system replicating the write back cache. At
block 305, secondary host system 135 creates or otherwise
starts secondary VM 110 using a virtual disk within storage
150. For example, VMMS 140 may select a host system 135
based upon resource utilization and/or another policy and
transmit an instruction to that host system 135 to start or
create secondary VM 110. Configuring a cache as secondary
enables the cache to be read and written as described herein,
but otherwise keeps secondary cache 180 in a slave/mirror
mode. For example, while dirty data in primary cache 180
may be flushed to persistent storage 150, dirty data in sec-
ondary caches 180 is not flushed to persistent storage 150.

In one embodiment, secondary VM 110 is booted to a halt
instruction. As a result, secondary VM 110 consumes mini-
mal CPU and memory resources in and of itself while serving
as a placeholder on secondary host system 135. A placeholder
VM enables VMMS 140 to associate and reserve processing,
memory, and/or storage resources for the secondary cache
within secondary host system 135, thereby enabling manage-
ment servers 130/140 to distribute resources in an efficient
manner and to allow for the promotion of secondary cache
180 to primary cache 180 in response to a migration or fail
over event. For example, a cache 100 gigabytes in size will
require a significant amount of metadata for logical block
addresses or other structures to facilitate access to cached data
and if the secondary host system 135 does not account for this
memory when placing the cache, the other VMs running on
the secondary host system 135 may incur greater memory
pressure. The placeholder VM reserves the appropriate
resources for this metadata and enables the management serv-
ers 130/140 to redistribute this load when needed by migrat-
ing the placeholder VM in the same manner as any other VM,
subject to an anti-affinity rule with respect to the primary VM
and other sibling placeholder VMs for the same cache. As a
result, the migration or other transfer of a host system’s cache
to another host system 135 can be implemented by migrating
or otherwise moving the placeholder VMs to the other host
system 135. Additionally, placeholder VMs enable a load
balancer to manage cache capacity along with other resources
without introducing an abstraction to represent the cached
data. If a failed VM 110 cannot be restarted because no host
system 135 can meet the VM’s resource needs (e.g., the VM’s
cache requirement), the load balancer can be invoked to make
capacity available (e.g., by migrating or terminating another
VM 110).

At block 310, secondary host system 135 establishes a
connection with primary host system 135 as described above.
In one embodiment, agent 185 within secondary host system
135 receives a request from primary host system 135 or oth-
erwise identifies primary host system 135 (as described
above) to establish a reliable data transfer (RDT) connection
and ensure delivery of data between respective caches 180.

At block 315, secondary host system 135 determines if
existing cache data is to be copied to secondary cache 180. As
described above, a previously operating primary or secondary
cache 180 may include unflushed write operations or other
cache data to copy to this new, migrated, or recovered sec-
ondary cache 180. For example, secondary host 135 may
include an existing secondary cache 180 or secondary host
135 may include a new secondary cache 180 with no data. If

US 9,183,099 B2

9

existing cache data is to be copied, at block 320, the existing
cache data is received and stored by secondary cache 180.

Upon completion of copying the existing data, or if no
existing data is to be copied, secondary host system 135
receives copied write operations from primary host system
135 that are intended for primary cache 180 at block 325.
Secondary host system 135 (e.g., utilizing agent 185) stores
the received write operations in secondary cache 180 and
transmits an acknowledgement for each successful write back
to primary host system 135.

At block 330, hypervisor 120 (or an agent running on
hypervisor 120) within secondary host 135 monitors for a
failure or migration of primary VM 110. For example, a
management server 130/140 or primary host system 135 may
transmit an indication of a fail over or migration event. If no
fail over or migration event is detected, method 300 continues
receiving and storing write operations in secondary cache 180
at block 325.

Ifprimary VM 110 is to be restarted on secondary host 135,
at block 335, secondary host 135 receives any migration or
fail over data from primary host 335. For example, primary
host system 135 or a management server 130/140 transfers or
initiates the transfer of any data (e.g., primary VM 110 virtual
disk data and memory or other data not yet committed to the
virtual disk) that was not previously transmitted to or other-
wise not accessible to secondary host 135 according to a fail
over or migration policy.

At block 340, while primary VM 110 is migrated to or
otherwise restarted on secondary host system 135, secondary
host system 135 migrates or otherwise terminates secondary
VM 110 and promotes secondary cache 180 to become pri-
mary cache 180 for primary VM 110 being resumed or
restarted, respectively, on secondary host system 135. For
example, upon or in anticipation of resuming/restarting the
primary VM 110 on secondary host system 135, secondary
cache 180 is transferred from the placeholder VM to the
primary VM 110. In one embodiment, a management server
130/140 or agent 185 within secondary host system 135 ini-
tiates the promotion of secondary cache 180. After promoting
the secondary cache 180 the management server 130/140 or
agent 185 within secondary host system 135 shuts down the
placeholder VM to free up processing, memory, and/or stor-
age resources reserved by the placeholder VM. In response to
transferring secondary cache 180 from the placeholder VM to
the primary VM 110, secondary cache 180 is configured to
operate as the primary/master cache. As a result, the newly
promoted primary cache 180 on secondary host system 135
handles /O requests, flushes dirty data to backing storage,
and is subject to mirroring of data to secondary cache(s) 180
as described herein. In one embodiment, as a part of the
promotion of secondary cache 180 to primary cache 180,
secondary host system 135 sets the cache operation policy to
write through (e.g., until new secondary cache(s) are estab-
lished as described above with reference to FIG. 2).

At block 345, secondary host system 135 optionally
flushes/copies dirty data from the new primary cache 180 to
persistent storage 150. As a result, the potential loss of dirty
data or inconsistency between caches 180 is prevented while
a new secondary cache(s) 180 is instantiated on another host
system 135.

Upon completion of restarting or resuming primary VM
110 on secondary host 135 and promoting secondary cache
180 to primary, secondary host 135 is promoted to primary
and may begin method 200 at block 205 or 210 as described
above.

FIG. 4 illustrates, in block diagram form, exemplary pro-
cessing system 400 to implement one or more of the methods

10

15

20

25

30

35

40

45

50

55

60

65

10

of write back cache replication. Data processing system 400
includes one or more microprocessors 405 and connected
system components (e.g., multiple connected chips). Alter-
natively, data processing system 400 is a system on a chip.

Data processing system 400 includes memory 410, which
is coupled to microprocessor(s) 405. Memory 410 may be
used for storing data, metadata, and programs for execution
by the microprocessor(s) 405. Memory 410 may include one
or more of volatile and non-volatile memories, such as Ran-
dom Access Memory (“RAM”), Read Only Memory
(“ROM™), a solid state disk (“SSD”), Flash, Phase Change
Memory (“PCM”), or other types of data storage. Memory
410 may be internal or distributed memory.

Data processing system 400 includes network and port
interfaces 415, such as a port, connector for a dock, or a
connector for a USB interface, FireWire, Thunderbolt, Eth-
ernet, Fibre Channel, etc. to connect the system 400 with
another device, external component, or a network. Exemplary
network and port interfaces 415 also include wireless trans-
ceivers, such as an IEEE 802.11 transceiver, an infrared trans-
ceiver, a Bluetooth transceiver, a wireless cellular telephony
transceiver (e.g., 2G, 3G, 4G, etc.), or another wireless pro-
tocol to connect data processing system 400 with another
device, external component, or a network and receive stored
instructions, data, tokens, etc.

Data processing system 400 also includes display control-
ler and display device 420 and one or more input or output
(“I/0”) devices and interfaces 425. Display controller and
display device 420 provides a visual user interface for the
user. [/O devices 425 allow a user to provide input to, receive
output from, and otherwise transfer data to and from the
system. /O devices 425 may include a mouse, keypad or a
keyboard, a touch panel or a multi-touch input panel, camera,
optical scanner, audio input/output (e.g., microphone and/or a
speaker), other known I/O devices or a combination of such
1/O devices.

It will be appreciated that one or more buses, may be used
to interconnect the various components shown in FIG. 4.

Data processing system 400 is an exemplary representation
of one or more of client device(s) 105, administrator device
106, VIM server 130, host system(s) 135, VMMS 140, and
storage device(s) 150 described above. Data processing sys-
tem 400 may be a personal computer, tablet-style device, a
personal digital assistant (PDA), a cellular telephone with
PDA-like functionality, a Wi-Fi based telephone, a handheld
computer which includes a cellular telephone, a media player,
an entertainment system, or devices which combine aspects
or functions of these devices, such as a media player com-
bined with a PDA and a cellular telephone in one device. In
other embodiments, data processing system 400 may be a
network computer, server, or an embedded processing device
within another device or consumer electronic product. As
used herein, the terms computer, device, system, processing
system, processing device, and “apparatus comprising a pro-
cessing device” may be used interchangeably with data pro-
cessing system 400 and include the above-listed exemplary
embodiments.

It will be appreciated that additional components, not
shown, may also be part of data processing system 400, and,
in certain embodiments, fewer components than that shown
in FIG. 4 may also be used in data processing system 400. It
will be apparent from this description that aspects of the
inventions may be embodied, at least in part, in software. That
is, the computer-implemented methods 200 and 300 may be
carried out in a computer system or other data processing
system 400 in response to its processor or processing system
405 executing sequences of instructions contained in a

US 9,183,099 B2

11

memory, such as memory 410 or other non-transitory
machine-readable storage medium. The software may further
be transmitted or received over a network (not shown) via
network interface device 415. In various embodiments, hard-
wired circuitry may be used in combination with the software
instructions to implement the present embodiments. Thus, the
techniques are not limited to any specific combination of
hardware circuitry and software, or to any particular source
for the instructions executed by data processing system 400.

An article of manufacture may be used to store program
code providing at least some of the functionality of the
embodiments described above. Additionally, an article of
manufacture may be used to store program code created using
at least some of the functionality of the embodiments
described above. An article of manufacture that stores pro-
gram code may be embodied as, but is not limited to, one or
more memories (e.g., one or more flash memories, random
access memories—static, dynamic, or other), optical disks,
CD-ROMs, DVD-ROMs, EPROMs, EEPROMs, magnetic or
optical cards or other type of non-transitory machine-read-
able media suitable for storing electronic instructions. Addi-
tionally, embodiments of the invention may be implemented
in, but not limited to, hardware or firmware utilizing an
FPGA, ASIC, a processor, a computer, or a computer system
including a network. Modules and components of hardware
or software implementations can be divided or combined
without significantly altering embodiments of the invention.

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. Various embodiments and aspects of the invention(s)
are described with reference to details discussed herein, and
the accompanying drawings illustrate the various embodi-
ments. The description above and drawings are illustrative of
the invention and are not to be construed as limiting the
invention. References in the specification to “one embodi-
ment,” “an embodiment,” “an exemplary embodiment,” etc.,
indicate that the embodiment described may include a par-
ticular feature, structure, or characteristic, but not every
embodiment may necessarily include the particular feature,
structure, or characteristic. Moreover, such phrases are not
necessarily referring to the same embodiment. Furthermore,
when a particular feature, structure, or characteristic is
described in connection with an embodiment, such feature,
structure, or characteristic may be implemented in connec-
tion with other embodiments whether or not explicitly
described. Blocks with dashed borders (e.g., large dashes,
small dashes, dot-dash, dots) are used herein to illustrate
optional operations that add additional features to embodi-
ments of the invention. However, such notation should not be
taken to mean that these are the only options or optional
operations, and/or that blocks with solid borders are not
optional in certain embodiments of the invention. Numerous
specific details are described to provide a thorough under-
standing of various embodiments of the present invention.
However, in certain instances, well-known or conventional
details are not described in order to provide a concise discus-
sion of embodiments of the present inventions.

It will be evident that various modifications may be made
thereto without departing from the broader spirit and scope of
the invention as set forth in the following claims. For
example, the methods described herein may be performed
with fewer or more features/blocks or the features/blocks may
be performed in differing orders. Additionally, the methods
described herein may be repeated or performed in parallel
with one another or in parallel with different instances of the
same or similar methods.

29 <

25

30

40

45

55

12

What is claimed is:

1. A computer-implemented method, comprising:

configuring, by a first host system, storage of the first host

system to serve as a primary cache for a virtual machine
running on the first host system;

configuring, by a second host system, storage of the second

host system to serve as a secondary cache;

booting, by the second host system, a placeholder virtual

machine on the second host system to reserve process-
ing, memory, or storage resources within the second host
system to account for operation of the secondary cache
or when the secondary cache is promoted to become a
new primary cache;

transmitting, in response to each of a plurality of write

operations from the virtual machine directed to the pri-
mary cache, the write operations from the first host
system to the second host system to create mirrored
copies on the secondary cache, wherein the first host
system forwards, to the virtual machine running on the
first host system, an acknowledgement of success of
each write operation from the virtual machine when the
write operation is committed to both the primary cache
and the secondary cache;

restarting or resuming the virtual machine on the second

host system in response to a failure or migration event;
and

promoting the secondary cache to serve as the new primary

cache for the virtual machine in response to the restart-
ing or resuming of the virtual machine on the second
host system.

2. The computer-implemented method of claim 1, wherein
the primary cache operates as a write back cache.

3. The computer-implemented method of claim 1, wherein
the transmitting of write operations to the second host system
includes a hypervisor agent running on the first host system
intercepting the write operations from the virtual machine,
transmitting a copy of the intercepted write operation to the
second host system, and routing the write operation to the
primary cache.

4. The computer-implemented method of claim 1, wherein
configuring the storage of the first host system to serve as the
primary cache includes using an existing cache within the
storage of the first host system.

5. The computer-implemented method of claim 1, further
comprising:

identifying, in response to the restarting or resuming of the

virtual machine on the second host system, a third host
system including another secondary cache for the virtual
machine;

booting a placeholder virtual machine on the third host

system to account for operation of the new secondary
cache;

transmitting, from the second host system to the third host

system, write operations directed to the new primary
cache to create mirrored copies on the other secondary
cache; and

shutting down the placeholder virtual machine on the sec-

ond host system.

6. The computer-implemented method of claim 1, wherein
the first or second host system is selected based upon the first
or second host system’s cache capacity, the relative impor-
tance of the virtual machine, resources upon which the virtual
machine or other virtual machines depend, files used by the
virtual machine, available capacity in other caches, a set of
host systems capable of running the virtual machine, or to
reserve capacity within a particular host system.

US 9,183,099 B2

13

7. The computer-implemented method of claim 1, further
comprising:
determining, by the first host system, that an acknowledge-
ment has not been received from the second host system
within a threshold period of time to confirm the write
operation was committed to the secondary cache;

configuring, by a third host system in response to the deter-
mination, storage of the third host system to serve as a
new secondary cache;

booting a placeholder virtual machine on the third host

system to account for operation of the new secondary
cache; and

transmitting, in response to write operations from the vir-

tual machine directed to the primary cache, the write
operations from the first host system to the third host
system to create mirrored copies on the third cache.

8. The computer-implemented method of claim 1, further
comprising:

altering, by the first host system, a primary cache operating

policy from operating as a write back cache to a write
through cache in response to a failure or migration of a
mirror cache;
transmitting, by the first host system, dirty data from the
primary cache to backing storage for the virtual machine
in response to the altered operating policy; and

altering, by the first host system, the primary cache oper-
ating policy from operating as a write through cache to a
write back cache in response to recovery or completed
migration of the mirror cache.

9. A non-transitory computer-readable medium storing
instructions, which when executed by a processing device,
cause the processing device to perform a method comprising:

configuring, by a first host system, storage of the first host

system to serve as a primary cache for a virtual machine
running on the first host system;

configuring, by a second host system, storage ofthe second

host system to serve as a secondary cache;

booting, by the second host system, a placeholder virtual

machine on the second host system to reserve process-
ing, memory, or storage resources within the second host
system to account for operation of the secondary cache
or when the secondary cache is promoted to become a
new primary cache;

transmitting, in response to each of a plurality of write

operations from the virtual machine directed to the pri-
mary cache, the write operations from the first host
system to the second host system to create mirrored
copies on the secondary cache, wherein the first host
system forwards, to the virtual machine running on the
first host system, an acknowledgement of success of
each write operation from the virtual machine when the
write operation is committed to both the primary cache
and the secondary cache;

restarting or resuming the virtual machine on the second

host system in response to a failure or migration event;
and

promoting the secondary cache to serve as a new primary

cache for the virtual machine in response to the restart-
ing or resuming of the virtual machine on the second
host system.

10. The non-transitory computer-readable medium of
claim 9, wherein the primary cache operates as a write back
cache.

11. The non-transitory computer-readable medium of
claim 9, wherein the transmitting of write operations to the
second host system includes a hypervisor agent running on
the first host system intercepting the write operations from the

25

35

40

45

50

60

65

14

virtual machine, transmitting a copy of the intercepted write
operation to the second host system, and routing the write
operation to the primary cache.

12. The non-transitory computer-readable medium of
claim 9, wherein configuring the storage of the first host
system to serve as the primary cache includes using an exist-
ing cache within the storage of the first host system.

13. The non-transitory computer-readable medium of
claim 9, the method further comprising:

identifying, in response to the restarting or resuming of the
virtual machine on the second host system, a third host
system including another secondary cache for the virtual
machine;

booting a placeholder virtual machine on the third host
system to account for operation of the new secondary
cache;

shutting down the placeholder virtual machine on the sec-
ond host system; and

transmitting, from the second host system to the third host
system, write operations directed to the new primary
cache to create mirrored copies on the other secondary
cache.

14. The non-transitory computer-readable medium of
claim 9, wherein the first or second host system is selected
based upon the first or second host system’s cache capacity,
the relative importance of the virtual machine, resources upon
which the virtual machine or other virtual machines depend,
files used by the virtual machine, available capacity in other
caches, a set of host systems capable of running the virtual
machine, or to reserve capacity within a particular host sys-
tem.

15. The non-transitory computer-readable medium of
claim 9, the method further comprising:

determining, by the first host system, that an acknowledge-
ment has not been received from the second host system
within a threshold period of time to confirm the write
operation was committed to the secondary cache;

configuring, by a third host system in response to the deter-
mination, storage of the third host system to serve as a
new secondary cache;

booting a placeholder virtual machine on the third host
system to account for operation of the new secondary
cache; and

transmitting, in response to write operations from the vir-
tual machine directed to the primary cache, the write
operations from the first host system to the third host
system to create mirrored copies on the third cache.

16. The non-transitory computer-readable medium of

claim 9, the method further comprising:

altering, by the first host system, a primary cache operating
policy from operating as a write back cache to a write
through cache in response to a failure or migration of a
mirror cache;

transmitting, by the first host system, dirty data from the
primary cache to backing storage for the virtual machine
in response to the altered operating policy; and

altering, by the first host system, the primary cache oper-
ating policy from operating as a write through cache to a
write back cache in response to recovery or completed
migration of the mirror cache.

17. A system comprising:

a plurality of processing devices, wherein the processing
devices execute instructions that cause first and second
host systems to perform a method comprising:
configuring, by the first host system, storage of the first

host system to serve as a primary cache for a virtual
machine running on the first host system;

US 9,183,099 B2

15

configuring, by the second host system, storage of the
second host system to serve as a secondary cache;
booting, by the second host system, a placeholder virtual
machine on the second host system to reserve pro-
cessing, memory, or storage resources within the sec-
ond host system to account for operation of the sec-
ondary cache or when the secondary cache is
promoted to become a new primary cache;
transmitting, in response to each of a plurality of write
operations from the virtual machine directed to the
primary cache, the write operations from the first host
system to the second host system to create mirrored
copies on the secondary cache, wherein the first host
system forwards, to the virtual machine running on
the first host system, an acknowledgement of success
of each write operation from the virtual machine
when the write operation is committed to both the
primary cache and the secondary cache;
restarting or resuming the virtual machine on the second
host system in response to a failure or migration
event; and
promoting the secondary cache to serve as a new pri-
mary cache for the virtual machine in response to the
restarting or resuming of the virtual machine on the
second host system.
18. The system of claim 17, wherein the primary cache
operates as a write back cache and wherein the transmitting of

25

16

write operations to the second host system includes a hyper-
visor agent running on the first host system intercepting the
write operations from the virtual machine, transmitting a
copy of the intercepted write operation to the second host
system, and routing the write operation to the primary cache.
19. The system of claim 17, wherein the first or second host
system is selected based upon the first or second host system’s
cache capacity, the relative importance of the virtual machine,
resources upon which the virtual machine or other virtual
machines depend, files used by the virtual machine, available
capacity in other caches, a set of host systems capable of
running the virtual machine, or to reserve capacity within a
particular host system.
20. The system of method 17, the method further compris-
ing:
altering, by the first host system, a primary cache operating
policy from operating as a write back cache to a write
through cache in response to a failure or migration of a
mirror cache;
transmitting, by the first host system, dirty data from the
primary cache to a backing storage for the virtual
machine in response to the altered operating policy; and
altering, by the first host system, the primary cache oper-
ating policy from operating as a write through cache to a
write back cache in response to recovery or completed
migration of the mirror cache.

#* #* #* #* #*

